чем накачивают шины самолета

Какое давление в шинах у самолета?

Как качают колеса на самолете?

На современных самолётах пневматики, как правило, бескамерные, и накачиваются воздухом или техническим азотом (использование последнего обусловлено предотвращением конденсации газа, с последующим замёрзанием его на высоте, с образованием опасного льда; азот дешёв, не горит).

Какие шины у самолета?

В весовом соотношении шина самолета состоит на 50% из резины, на 45 % из корда и на 5% из металла. Углубившись в материалы компонента детальнее, можно увидеть различные типы резиновых смесей и нейлоновых кордов. Они имеют свои особые свойства для успешного выполнения поставленных задач.

Чем можно заполнить колеса?

Сколько стоят колеса на самолет?

Что залито в колеса в самолетах?

Внутри шины заполнены газом — азотом, а не сжатым воздухом, как автошина. Поэтому авиационные шины всегда сухие, без воды внутри и не могут замерзнуть.

Какой самый большой самолет в мире?

Ан-225 «Мрия» – самый большой и по размерам, и по грузоподъемности самолет в мире за всю историю авиации.

Зачем азот в самолете?

Для того, чтобы минимизировать последствия, внутри у нас находится азот. Этот газ не горюч и не может поддержать процесс горения. Для чего покрышки самолета накачивают не воздухом, а азотом? Отвечает пилот самолета.

Как часто меняют резину на самолете?

Считается, что ее необходимо менять после 7-10 полетов в зависимости от изношенности. Для каждой конкретной модели лайнера существует свой регламент, но обычно новые покрышки на колеса надевают после того, как старые уже 5 раз ремонтировали.

Кто производит шины для самолетов?

ООО «ЯШЗ Авиа» – крупнейший в России лицензированный разработчик и производитель более 100 типоразмеров авиационных шин для самолетов, вертолетов и наземной техники военного, гражданского и двойного назначения.

Сколько стоит заполнить азот в шинах?

Цена на накачку шин азотом вполне доступна – 200-250 руб/колесо в зависимости от типоразмера покрышки, а результатом станет более высокий комфорт и безопасность.

Как пользоваться Антипрокольной жидкостью?

Как пользоваться герметиком для шин?

Какие самые дорогие шины?

На сегодняшний день самыми большими и дорогими шинами, которые когда-либо выпускались производителями, является модель Michelin XDR 59/80R63. Резина предназначена для серийного самосвала Caterpillar. Этот гигант способен поднимать грузы весом более 600 тонн за один раз.

Источник

Чем накачивают шины самолета

чем накачивают шины самолета. Смотреть фото чем накачивают шины самолета. Смотреть картинку чем накачивают шины самолета. Картинка про чем накачивают шины самолета. Фото чем накачивают шины самолета

чем накачивают шины самолета. Смотреть фото чем накачивают шины самолета. Смотреть картинку чем накачивают шины самолета. Картинка про чем накачивают шины самолета. Фото чем накачивают шины самолета

Современная Авиация запись закреплена

Для чего покрышки самолета накачивают не воздухом, а азотом?

Все, как обычно, не просто так.

Начнем с того, что шины самолета ежедневно испытывают огромные нагрузки. Особенно это касается момента соприкосновения шасси с землей во время посадки.

Самолет может лететь на скорости более 300 км/час, при этом колеса его находятся в неподвижном состоянии. И тут им в один момент приходится раскрутиться до скорости движения самолета. Действительно серьезная нагрузка.

Кстати говоря, именно по этой причине взлетно-посадочные полосы становятся черными около своих торцов.

Это резина в момент соприкосновения стирается с колес. Поэтому наземному персоналу и летному экипажу перед каждым полетом следует проверять протектор на степень износа.

Так вот именно в такие моменты «напряжения» существует шанс взрыва покрышки. Для того, чтобы минимизировать последствия, внутри у нас находится азот.

Этот газ не горюч и не может поддержать процесс горения.

Также азот заправляют и в стойки амортизаторов.

Как только самолет переходит в снижение, все это дело не успевает нагреться и растаять до момента посадки.

Соответственно риск сломать что-либо из-за нароста льда внутри сильно вырастает. Азот же, в свою очередь, не содержит в себе влаги, что решает данную проблему.

Источник

Что внутри авиационной шины? Секрет «сосуда высокого давления» и современные технологии

Современная авиационная шина – сложная высокотехнологическая структура и один из наименее понимаемых и наиболее недооцененных элементов самолета. Авиашина – многоэлементный компонент, сконструированный из трех материалов: корд, резина, металл. В весовом соотношении шина самолета состоит на 50% из резины, на 45 % из корда и на 5% из металла.

При посадке самолета шасси испытывает колоссальные не только статические, но и и динамические нагрузки, воспринимаемые стойками и колесами. Прибавьте к этому, что при полете колеса были неподвижны, а при касании к ВПП должны быстро набрать обороты, соответствующие посадочной скорости. Таким образом, к шасси современных самолетов, предъявляются достаточно высокие и жесткие требования.

чем накачивают шины самолета. Смотреть фото чем накачивают шины самолета. Смотреть картинку чем накачивают шины самолета. Картинка про чем накачивают шины самолета. Фото чем накачивают шины самолета

Авиационные шины и колеса в сборе могут работать под высоким давлением, чтобы нести налагаемую на них нагрузку, к ним следует относиться с той же осторожностью, что и к любому другому сосуду высокого давления. Множественные слои каркаса соединены вместе, образуя общий каркас, делая шину способной удерживать внутреннее давление.

Амортизационные стойки

Основными наиболее нагруженными элементами шасси летательного аппарата являются амортизационные стойки и колёса (пневматики).

Имеется также система раскосов, тяг и шарниров, воспринимающих реакции опорной поверхности и крепящих амортизационные стойки и колёса к крылу и фюзеляжу, которые служат одновременно механизмом уборки-выпуска.

Колеса шасси самолета поддерживают его на земле и обеспечивают средства мобильности для взлета, посадки и руления. А пневматические шины амортизируя, предохраняют самолет от ударных импульсов из-за неровностей поверхности и недостатков техники пилотирования при посадке.

чем накачивают шины самолета. Смотреть фото чем накачивают шины самолета. Смотреть картинку чем накачивают шины самолета. Картинка про чем накачивают шины самолета. Фото чем накачивают шины самолета

Диски (барабаны) колёс часто изготавливаются из сплавов на основе магния. Обычно это магниево-цинковые сплавы, которые очень трудно обрабатывать либо титановые. В настоящее время только несколько промышленных держав в мире могут производить шины для истребителей с высокими эксплуатационными характеристиками.

Сложная высокотехнологическая структура

Колеса самолета разработаны таким образом, чтобы облегчить замену шин (пневматиков). Сами диски колес обычно изготавливаются разборными, из двух половинок, которые соединяются между собой болтами. Для увеличения герметичности колес перед сборкой обе половины диска и внешние стороны покрышки обрабатываются специальным клеевым составом, и только после этого производят сборку.

чем накачивают шины самолета. Смотреть фото чем накачивают шины самолета. Смотреть картинку чем накачивают шины самолета. Картинка про чем накачивают шины самолета. Фото чем накачивают шины самолета

На современных скоростных самолётах пневматики бескамерные и накачиваются техническим азотом (использование последнего обусловлено предотвращением конденсации газа, и последующего его замёрзания на высоте, с образованием опасного льда и кроме того азот дешёв и не горит). Протекторы шин шасси самолётов не имеют никакого рисунка, кроме нескольких продольных кольцевых водоотводящих канавок для уменьшения эффекта аквапланирования, а также контрольных углублений для простоты определения степени износа. Форма шины в поперечном сечении близка до круглой, для обеспечения максимального контактного пятна колеса при посадке с креном. Пневматики снабжены дисковыми или колодочными тормозами с гидравлическим, пневматическим или электрическим приводом, для маневрирования при движении по аэродрому и уменьшения длины пробега после посадки.

В целом современная авиационная шина – сложная высокотехнологическая структура, которая работает с огромными скоростями, и нагрузками при минимально возможном весе и размерах.

чем накачивают шины самолета. Смотреть фото чем накачивают шины самолета. Смотреть картинку чем накачивают шины самолета. Картинка про чем накачивают шины самолета. Фото чем накачивают шины самолета

Требования к шинам и колесам шасси самолетов в целом достаточно жесткие и порой противоречивые

Высокое давление

Именно авиационные колеса во многом и содержат сегодня большинство новейших изобретений, воплощенных на практике. По авиационным стандартам шина должна выдерживать давление в 4 раза выше, чем то, на которое она рассчитана, так что теоретически шины могут выдержать жесткое приземление на скорости свыше 450 км/ч.

Кроме того, что самолетные шины испытывают колоссальные статические и динамические нагрузки, они подвергаются и тепловым, когда длительное время находятся в условиях низких температур, а во время посадки быстро набирают скорость около 300 км/ч (некоторые до 460 км/ч). При соприкосновении с землей, температура шины поднимается до 260°С.

Шины стабильно выдерживают разность температур и нагрузку. Они сконструированы таким образом, чтобы максимально противостоять износу и разрыву. Они выполняются многослойными с прочным нейлоновым и арамидным шнуром, расположенным под каждым слоем. Каждый слой имеет свойство выдерживать колоссальную нагрузку и давление воздуха. Корд не переплетается, а располагается одинарными слоями параллельно и удерживается вместе тонкими пленками резины, которая защищает корд из смежных слоев от перетирания друг о друга при изгибании пневматика в процессе эксплуатации.

Во время изготовления шины, слои накладываются парами таким образом, что корды смежных слоев располагаются под углом 90° друг к другу в случае перекрещивающегося (диагонального) пневматика и от борта к борту с примерным углом 90° к центральной линии шины в радиальном пневматике.

Для поглощения и распределения динамических нагрузок и защиты корпуса от ударного повреждения между корпусом и протектором располагаются два узких слоя, запрессованных в толстые резиновые прослойки. Эти специальные слои называются брекерными поясами.

чем накачивают шины самолета. Смотреть фото чем накачивают шины самолета. Смотреть картинку чем накачивают шины самолета. Картинка про чем накачивают шины самолета. Фото чем накачивают шины самолета

Индекс прочности шины

Изготовители шин присваивают каждому пневматику норму слойности. Эта норма напрямую не относится к количеству слоев в шине, а является индексом прочности шины.

Проволочная намотка делается жесткой с помощью скрепления резиной всей проволоки вместе, создавая крепкое соединение. Бортовая проволока (сердечник борта) также укреплен с помощью обмотки тканевыми полосками до применения основных и наполнительных лент. Основные ленты, изготовленные из резины и располагающиеся под прорезиненными тканевыми наполнительными лентами, обеспечивают большую жесткость и меньшую резкость изменений секции борта. Они также увеличивают зону контакта.

В условиях грубого торможения, нагрев колеса, шины и тормоза может быть достаточным, чтобы вызвать разрыв шины с возможными катастрофическими последствиями для самолета. Для предотвращения внезапного разрыва на некоторых бескамерных колесах устанавливаются термосвидетели. Эти заглушки устанавливаются в барабан колеса с помощью легкоплавкого сплава, который плавится в условиях перегрева и выталкивается повышенным давлением воздуха в пневматике. Это предотвращает чрезмерное повышение давления в пневматике путем контролируемого снижения давления в нем.

Особенностью колес самолета, как и всего, что связано с авиацией, является постоянный контроль технического состояния, поэтому проверка давления в шинах производится каждый раз после приземления и перед вылетом.

Но посадки и взлеты негативно отражаются на состоянии шин, поэтому авиационные колеса в отличие от автомобильных имеют относительно небольшой срок годности, и при малейших подозрениях механиков на наличие дефектов подлежат замене.

Статические и динамические тестовые проверки

Статические

чем накачивают шины самолета. Смотреть фото чем накачивают шины самолета. Смотреть картинку чем накачивают шины самолета. Картинка про чем накачивают шины самолета. Фото чем накачивают шины самолета

Динамические

Источник

АЗОТ ИЛИ ВОЗДУХ В ШИНАХ. РАЗВЕНЧИВАЕМ МИФЫ

чем накачивают шины самолета. Смотреть фото чем накачивают шины самолета. Смотреть картинку чем накачивают шины самолета. Картинка про чем накачивают шины самолета. Фото чем накачивают шины самолета

чем накачивают шины самолета. Смотреть фото чем накачивают шины самолета. Смотреть картинку чем накачивают шины самолета. Картинка про чем накачивают шины самолета. Фото чем накачивают шины самолета

Что лучше – бесплатный воздух или же «волшебный» азот в покрышках? Мнений очень много. Те, кто закачивал в шины азот вместо воздуха, рекомендуют также делать своим знакомым и друзьям. Многие слышали, что в болидах «Формулы 1» используются именно азот для накачивания шин. Да что там «Формула 1»! В покрышках самолетов, в большегрузах и суперкарах – тоже азот. Мнения разделились.

Какие же преимущества азота перед кислородом в покрышках, есть ли вообще разница, или это банальное выкачивание денег? «Продавцы воздуха» называют такие плюсы:
— стабильное давление в покрышках, вследствие чего уменьшается износ;
— плавный ход автомобиля;
— хорошее сцепление с дорогой;
— в случае прокола покрышки скорость утечки меньше;
— не зависимо от температуры в покрышке постоянное давление;
— хорошая экономия топлива.

На первый взгляд за небольшие средства сколько сразу полезных и важных свойств! Современные автовладельцы любят всякие экзотические вещи, вроде чудо-присыпок, спойлеров на дворники, которые якобы улучшают аэродинамику и т.д. Так же они ухватились и за это «новаторство» с азотом в покрышках.

Если вспомнить физику из школьного курса, то понятно, что «воздух» состоит из 78% азота, 21% кислорода, 1% углекислого газа и других газов. А рекламируемая шиномонтажниками смесь состоит из 95% азота и 5% кислорода.

А теперь можно проанализировать все распространенные «мифы об азоте».

Миф 1. Стабильное давление в шине. Так как коэффициент теплового расширения азота ниже, чем воздуха, то и воздействие окружающей температуры на шину практически не влияет на давление внутри нее. Азот не расширяется вообще, в отличие от воздуха. Поэтому именно азот идеален для накачивания в покрышки.

Однако любой человек, хоть немного знающий физику, понимает, что заявление о независимости от температуры давления газа в каком-либо замкнутом пространстве вступает в противоречие с законами Гей-Люссака (для любых газов коэффициент объемного расширения один и тот же) и Шарля (отношение давления к температуре – есть величина постоянная). Можно сделать вывод: все заявления о том, что азот будет себя вести иначе, чем кислород, при повышении или понижении температуры – самые настоящие выдумки, которые рассчитаны на необразованного человека. Конечно, небольшая разница в коэффициенте объемного расширения все-таки есть, но она составляет всего 0,0001. Соответственно изменение давления в покрышках будет около 0,00025 атм. Это существенное изменение? Безусловно, нет. Для тех, кто не верит науке, можно посоветовать самостоятельно провести небольшой эксперимент: одну шину накачать азотом, а другую воздухом и попеременно погружать то в кипяток, то в ледяную воду. Вряд ли давление будет стабильным.

Миф 2. Шина, накачанная азотом, не сдувается никогда. Молекулы азота очень большие, гораздо больше, чем у кислорода, и они чрезвычайно медленно проходят через микропоры в резине.

Опять обращаемся к физике. Размер молекулы азота составляет 0,364 нм, а молекулы кислорода – 0,346 нм. Эта разница не ощутима ни одним манометром. Старая шина, имеющая трещины, будет сдуваться в любом случае, чем бы ни была накачана. А качественная – в состоянии поддерживать давление годами, стравливая его разве что через вентиль или стык обода и покрышки.

Возможно весь секрет в том, что «крупные» молекулы азота как бы забивают микропоры шины и не пропускают наружу молекулы других газов? Хотя в той смеси, которую рекламируют продавцы, азота больше всего на 16-17%, чем в обычном воздухе.

Миф 3. Возможность взрыва покрышки минимальна. Поскольку азот – инертный газ и не поддерживает горение. При больших скоростях шина не нагревается, поскольку в ней нет горючего кислорода.

Итак, попробуем разобраться во всем этом. Если посмотреть на таблицу Менделеева, то сразу видно, что инертные газы находятся в 8 группе, а азот относится к 5 группе. Это одно. Самое главное другое – шина лопается, а не взрывается, звук, который слышен при этом – это скачок давления от ударной волны.

Нормальная покрышка для легкового автомобиля способна выдержать давление до 9 атм. Чтобы шина лопнула, ее нужно нагреть до температуры не менее 1000° С. При такой температуре расплавится даже стальной диск.

Миф 4. Экономия расхода топлива. Колесо, накачанное азотом, легче по весу, чем колесо, накачанное воздухом. Соответственно нагрузка на подвеску меньше и расход топлива снижается.

На первый взгляд – все логично. Но давайте посчитаем, какая же разница в массе колес, накачанных азотом и воздухом. 1 кубический метр воздуха содержит 78% азота – это 1,29 кг, а чистого азота – 1,25 кг. Для примера возьмем распространенное колесо с покрышкой 165/70R13 и посчитаем массу газа в нем. Объем такой покрышки примерно 20 литров, избыточное давление составит 2 кгс/см2, т.е. легко посчитать, что в такой шине приблизительно 60 литров газа. Значит, содержание азота в данной шине составит 0,0750 кг, а воздуха – 0,0774 кг. Вот и вся разница! Нужны просто ювелирные весы, чтобы уловить такую разницу в весе. Естественно, ни о какой разнице в весе и экономии топлива не может идти и речь.

Миф 5. Замедленное старение шины по причине отсутствия в азоте пыли, влаги и масла. Это подтверждают испытания, проводимые Continental, Bridgestone, Michelin.

Если задуматься, то воздействие окружающей среды (различные реагенты, находящиеся на дорожном покрытии, ультрафиолетовое излучение, битум и т.д.) на шину гораздо более масштабное, чем воздействие внутреннего наполнителя. К тому же для особо щепетильных автовладельцев не проблема закачать в покрышку чистый воздух, для этого достаточно приобрести компрессор с осушителем и фильтром.

Неужели заказав в шину азот, можно сохранить каркас шин от окисления, как обещают «продавцы воздуха»? В это трудно поверить, поскольку он хорошо спрятан в толще резины и не может контактировать с воздухом, к тому же проволочки каркаса покрыты латунью и нелегко поддаются окислению.

Миф 6. Улучшение сцепления покрышек с дорожным покрытием. Азот более стабилен в сравнении с воздухом (который способен поддаваться окружающей среде).

Этот миф вообще трудно как-то прокомментировать. Нечего обсуждать, с какой стороны ни посмотри. На сцепление покрышек с дорожным покрытием влияет все, что угодно (состояние самой дороги, конструкция шины, качество резины, из которой сделана шина, распределение напряжения в пятне контакта), но только не газ, который закачан в эту шину.

Зато хитрые продавцы иногда умышленно недокачивают шины азотом и предупреждают клиента, чтобы он ни в коем случае не подкачивал шины воздухом, ну и не проверял давление.

Так что азот в покрышках, вместо обычного воздуха – это никакое не новаторство, а скорее дань моде, которая обычно не советуется с наукой. Зато небольшие деньги, которые отданы «продавцам воздуха» за азот вполне могут быть компенсированы впечатлением, произведенным на друзей при произнесении фразы: «А в моем автомобиле – азотные покрышки, как у Шумахера!».

Источник

Что внутри авиационной шины? Секрет «сосуда высокого давления» и современные технологии

чем накачивают шины самолета. Смотреть фото чем накачивают шины самолета. Смотреть картинку чем накачивают шины самолета. Картинка про чем накачивают шины самолета. Фото чем накачивают шины самолета

При посадке самолета шасси испытывает колоссальные не только статические, но и и динамические нагрузки, воспринимаемые стойками и колесами. Прибавьте к этому, что при полете колеса были неподвижны, а при касании к ВПП должны быстро набрать обороты, соответствующие посадочной скорости. Таким образом, к шасси современных самолетов, предъявляются достаточно высокие и жесткие требования.

Авиационные шины и колеса в сборе могут работать под высоким давлением, чтобы нести налагаемую на них нагрузку, к ним следует относиться с той же осторожностью, что и к любому другому сосуду высокого давления. Множественные слои каркаса соединены вместе, образуя общий каркас, делая шину способной удерживать внутреннее давление.

Основными наиболее нагруженными элементами шасси летательного аппарата являются амортизационные стойки и колеса (пневматики).

Имеется также система раскосов, тяг и шарниров, воспринимающих реакции опорной поверхности и крепящих амортизационные стойки и колеса к крылу и фюзеляжу, которые служат одновременно механизмом уборки-выпуска.

Колеса шасси самолета поддерживают его на земле и обеспечивают средства мобильности для взлета, посадки и руления. А пневматические шины амортизируя, предохраняют самолет от ударных импульсов из-за неровностей поверхности и недостатков техники пилотирования при посадке.

Диски (барабаны) колес часто изготавливаются из сплавов на основе магния. Обычно это магниево-цинковые сплавы, которые очень трудно обрабатывать либо титановые. В настоящее время только несколько промышленных держав в мире могут производить шины для истребителей с высокими эксплуатационными характеристиками.

Сложная высокотехнологическая структура

Колеса самолета разработаны таким образом, чтобы облегчить замену шин (пневматиков). Сами диски колес обычно изготавливаются разборными, из двух половинок, которые соединяются между собой болтами. Для увеличения герметичности колес перед сборкой обе половины диска и внешние стороны покрышки обрабатываются специальным клеевым составом, и только после этого производят сборку.

На современных скоростных самолетах пневматики бескамерные и накачиваются техническим азотом (использование последнего обусловлено предотвращением конденсации газа, и последующего его замерзания на высоте, с образованием опасного льда и кроме того азот дешев и не горит). Протекторы шин шасси самолетов не имеют никакого рисунка, кроме нескольких продольных кольцевых водоотводящих канавок для уменьшения эффекта аквапланирования, а также контрольных углублений для простоты определения степени износа. Форма шины в поперечном сечении близка до круглой, для обеспечения максимального контактного пятна колеса при посадке с креном. Пневматики снабжены дисковыми или колодочными тормозами с гидравлическим, пневматическим или электрическим приводом, для маневрирования при движении по аэродрому и уменьшения длины пробега после посадки.

Требования к шинам и колесам шасси самолетов в целом достаточно жесткие и порой противоречивые

Именно авиационные колеса во многом и содержат сегодня большинство новейших изобретений, воплощенных на практике. По авиационным стандартам шина должна выдерживать давление в 4 раза выше, чем то, на которое она рассчитана, так что теоретически шины могут выдержать жесткое приземление на скорости свыше 450 км/ч.

Кроме того, что самолетные шины испытывают колоссальные статические и динамические нагрузки, они подвергаются и тепловым, когда длительное время находятся в условиях низких температур, а во время посадки быстро набирают скорость около 300 км/ч (некоторые до 460 км/ч). При соприкосновении с землей, температура шины поднимается до 260°С.

Шины стабильно выдерживают разность температур и нагрузку. Они сконструированы таким образом, чтобы максимально противостоять износу и разрыву. Они выполняются многослойными с прочным нейлоновым и арамидным шнуром, расположенным под каждым слоем. Каждый слой имеет свойство выдерживать колоссальную нагрузку и давление воздуха. Корд не переплетается, а располагается одинарными слоями параллельно и удерживается вместе тонкими пленками резины, которая защищает корд из смежных слоев от перетирания друг о друга при изгибании пневматика в процессе эксплуатации.

Во время изготовления шины, слои накладываются парами таким образом, что корды смежных слоев располагаются под углом 90° друг к другу в случае перекрещивающегося (диагонального) пневматика и от борта к борту с примерным углом 90° к центральной линии шины в радиальном пневматике.

Для поглощения и распределения динамических нагрузок и защиты корпуса от ударного повреждения между корпусом и протектором располагаются два узких слоя, запрессованных в толстые резиновые прослойки. Эти специальные слои называются брекерными поясами.

Индекс прочности шины

Изготовители шин присваивают каждому пневматику норму слойности. Эта норма напрямую не относится к количеству слоев в шине, а является индексом прочности шины.

Проволочная намотка делается жесткой с помощью скрепления резиной всей проволоки вместе, создавая крепкое соединение. Бортовая проволока (сердечник борта) также укреплен с помощью обмотки тканевыми полосками до применения основных и наполнительных лент. Основные ленты, изготовленные из резины и располагающиеся под прорезиненными тканевыми наполнительными лентами, обеспечивают большую жесткость и меньшую резкость изменений секции борта. Они также увеличивают зону контакта.

В условиях грубого торможения, нагрев колеса, шины и тормоза может быть достаточным, чтобы вызвать разрыв шины с возможными катастрофическими последствиями для самолета. Для предотвращения внезапного разрыва на некоторых бескамерных колесах устанавливаются термосвидетели. Эти заглушки устанавливаются в барабан колеса с помощью легкоплавкого сплава, который плавится в условиях перегрева и выталкивается повышенным давлением воздуха в пневматике. Это предотвращает чрезмерное повышение давления в пневматике путем контролируемого снижения давления в нем.

Особенностью колес самолета, как и всего, что связано с авиацией, является постоянный контроль технического состояния, поэтому проверка давления в шинах производится каждый раз после приземления и перед вылетом.

Но посадки и взлеты негативно отражаются на состоянии шин, поэтому авиационные колеса в отличие от автомобильных имеют относительно небольшой срок годности, и при малейших подозрениях механиков на наличие дефектов подлежат замене.

Статические и динамические тестовые проверки

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *