чем различаются позиционные и непозиционные системы счисления

Позиционные и непозиционные системы счисления

чем различаются позиционные и непозиционные системы счисления. Смотреть фото чем различаются позиционные и непозиционные системы счисления. Смотреть картинку чем различаются позиционные и непозиционные системы счисления. Картинка про чем различаются позиционные и непозиционные системы счисления. Фото чем различаются позиционные и непозиционные системы счисления чем различаются позиционные и непозиционные системы счисления. Смотреть фото чем различаются позиционные и непозиционные системы счисления. Смотреть картинку чем различаются позиционные и непозиционные системы счисления. Картинка про чем различаются позиционные и непозиционные системы счисления. Фото чем различаются позиционные и непозиционные системы счисления чем различаются позиционные и непозиционные системы счисления. Смотреть фото чем различаются позиционные и непозиционные системы счисления. Смотреть картинку чем различаются позиционные и непозиционные системы счисления. Картинка про чем различаются позиционные и непозиционные системы счисления. Фото чем различаются позиционные и непозиционные системы счисления чем различаются позиционные и непозиционные системы счисления. Смотреть фото чем различаются позиционные и непозиционные системы счисления. Смотреть картинку чем различаются позиционные и непозиционные системы счисления. Картинка про чем различаются позиционные и непозиционные системы счисления. Фото чем различаются позиционные и непозиционные системы счисления

чем различаются позиционные и непозиционные системы счисления. Смотреть фото чем различаются позиционные и непозиционные системы счисления. Смотреть картинку чем различаются позиционные и непозиционные системы счисления. Картинка про чем различаются позиционные и непозиционные системы счисления. Фото чем различаются позиционные и непозиционные системы счисления

чем различаются позиционные и непозиционные системы счисления. Смотреть фото чем различаются позиционные и непозиционные системы счисления. Смотреть картинку чем различаются позиционные и непозиционные системы счисления. Картинка про чем различаются позиционные и непозиционные системы счисления. Фото чем различаются позиционные и непозиционные системы счисления

Системы счисления принято делить на два класса: непозиционные и позиционные.

В непозиционных СС от положения (позиции) цифры в записи не зависит величина, которую она обозначает. Характерным примером такой системы счисления является римская СС.

Например, в римской СС число CCXXXII складывается из двух сотен, трех десятков и двух единиц и равно двумстам тридцати двум.

В римских числах цифры записываются слева направо в порядке убывания. В таком случае их значения складываются. Если же слева записана меньшая цифра, а справа – большая, то их значения вычитаются.

Например:

VI = 5 + 1 = 6, а IV = 5 – 1 = 4.

MCMXCVIII = 1000 + (-100 + 1000) + (-10 + 100) + 5 + 1 + 1 + 1 = 1998.

Такие системы счисления используются редко, т.к. не приспособлены для вычислений.

На практике наибольшее распространение получили позиционные системы счисления.

Позиционная система счисления – система счисления, в которой значение каждой цифры в изображении числа определяется ее положением (позицией) в ряду других цифр. В каждой позиционной системе счисления имеется основание. Любое число записывается в виде последовательности из цифр основания. Количество цифр основания равно самому основанию. Основание показывает, во сколько раз вес каждой цифры меньше веса цифры, стоящей в старшем соседнем разряде.

Некоторые позиционные системы счисления

ОснованиеСистема счисленияЗнаки
Двоичная0,1
Троичная0,1,2
Четвертичная0,1,2,3
Пятиричная0,1,2,3,4
Восьмиричная0,1,2,3,4,5,6,7
Десятиричная0,1,2,3,4,5,6,7,8,9
Двенадцатиричная0,1,2,3,4,5,6,7,8,9,А,В
Шестнадцатиричная0,1,2,3,4,5,6,7,8,9,А,В,D,E,F

Числа, которыми мы привыкли пользоваться, называются десятичными и арифметика, которой мы пользуемся, также называется десятичной. Называются они так потому, что каждое число можно составить из набора цифр содержащего 10 символов (цифр) –0123456789.

Возьмём, к примеру, число 246. Его запись означает, что в числе две сотни, четыре десятка и шесть единиц. Следовательно, можно записать следующее равенство:

246 = 200 + 40 + 6 = 2 * 10 2 + 4 * 10 1 + 6 * 10 0

В нашем числе три цифры. Старшая цифра «2» имеет номер 3. Так вот она умножается на 10 во второй степени. Следующая цифра «4» имеет порядковый номер 2 и умножается на 10 в первой степени. Уже видно, что цифры умножаются на десять в степени на единицу меньше порядкового номера цифры.

При этом пользуются следующим алгоритмом:

1) цифра в каждой позиции умножается на основание в степени на 1 меньшую, чем номер позиции;

2) полученные таким образом значения складываются.

12310 = 1 * 10 2 + 2 * 10 1 + 3 * 10 0 ;

В других системам счисления такой перевод будет выглядеть следующим образом:

1238 = 1х8 2 + 2 х 8 1 + 3 х 8 0 = 8310;

1012 = 1 х 2 2 + 0 х 2 1 + 1 х 2 0 = 510;

1Е316 = 1 х 16 2 + 14 х 16 1 + 3 х 16 0 = 48310.

Здесь индекс числа служит указанием на основание системы счисления. Назовем основанием системы счисления число, равное мощности множества (т.е. количеству элементов множества) различных символов, допустимых в каждой позиции числа.

Десятичная система счисления является однородной. Это означает, что одних и тех же символов достаточно для изображения любого числа. Но в повседневной жизни мы пользуемся и неоднородными системами счисления, и системами счисления с другим основанием. Пример тому – неметрические системы единиц (1 пуд=40 фунтов), система счета времени (1 минута = 60 секунд).

В дальнейшем мы будем рассматривать однородные позиционные системы счисления.

Обозначим через p основание системы счисления. Тогда веса позиций числа могут быть представлены следующим образом:

чем различаются позиционные и непозиционные системы счисления. Смотреть фото чем различаются позиционные и непозиционные системы счисления. Смотреть картинку чем различаются позиционные и непозиционные системы счисления. Картинка про чем различаются позиционные и непозиционные системы счисления. Фото чем различаются позиционные и непозиционные системы счисления

Таким образом, любое число X в позиционной системе счисления с основанием p можно представить в следующей развернутой форме записи:

чем различаются позиционные и непозиционные системы счисления. Смотреть фото чем различаются позиционные и непозиционные системы счисления. Смотреть картинку чем различаются позиционные и непозиционные системы счисления. Картинка про чем различаются позиционные и непозиционные системы счисления. Фото чем различаются позиционные и непозиционные системы счисления,

чем различаются позиционные и непозиционные системы счисления. Смотреть фото чем различаются позиционные и непозиционные системы счисления. Смотреть картинку чем различаются позиционные и непозиционные системы счисления. Картинка про чем различаются позиционные и непозиционные системы счисления. Фото чем различаются позиционные и непозиционные системы счисления,

p – основание системы счисления;

m – количество позиций или разрядов, отведенное для изображения целой части числа;

s – количество разрядов, отведенное для изображения дробной части числа;

n = m + s – общее количество разрядов в числе,

ai – любой допустимый символ в разряде (т.е. должен принадлежать множеству <0,1, p-1>).

чем различаются позиционные и непозиционные системы счисления. Смотреть фото чем различаются позиционные и непозиционные системы счисления. Смотреть картинку чем различаются позиционные и непозиционные системы счисления. Картинка про чем различаются позиционные и непозиционные системы счисления. Фото чем различаются позиционные и непозиционные системы счисления

Заметим, что число, равное основанию системы счисления, в самой системе счисления записывается в виде:

В компьютерных науках наибольшее распространение получила не десятичная, а системы счисления с основанием, кратным 2 – двоичная, восьмеричная, шестнадцатеричная.

В двоичной системе счисления допустимыми символами являются только 0 и 1, а само число может быть представлено в виде последовательности нулей и единиц.

110100102 = 1 * 2 7 + 1 * 2 6 + 0 * 2 5 + 1 * 2 4 + 0 * 2 3 + 0 * 2 2 + 1 * 2 1 + 0 * 2 0 = 16210

В восьмеричной системе счисления допустимыми символами являются 0,1,…7.

2428 = 2 * 8 2 + 4 * 8 1 + 2 * 8 0 = 16210

В шестнадцатеричной системе допустимыми символами являются 0, 1, 9, A, B, C, D, E, F.

A216 = 10 * 16 1 + 2 * 16 0 = 16210

Источник

Разница между позиционной и непозиционной системой счисления

Системы счисления классифицируются на 2 основные разновидности — позиционные и непозиционные. В чем заключается специфика тех и других?

чем различаются позиционные и непозиционные системы счисления. Смотреть фото чем различаются позиционные и непозиционные системы счисления. Смотреть картинку чем различаются позиционные и непозиционные системы счисления. Картинка про чем различаются позиционные и непозиционные системы счисления. Фото чем различаются позиционные и непозиционные системы счисления

Что представляет собой позиционная система счисления?

Рассматриваемая система счисления характеризуется тем, что цифры в ней в зависимости от своей позиции относительно начала числа (при его прочтении слева направо) будут иметь разную силу. Чем правее расположена цифра — тем она слабее. Например, в числе 143 самая сильная цифра — 1, поскольку обозначает сотню, далее по силе — 4, поскольку она обозначает десяток, третья по силе цифра — 3, так как она соответствует единичному числу.

Систем счисления, считающихся позиционными, в мире используется довольно много. В числе самых распространенных — двоичная (применяется в программировании), десятичная (более всего распространена в повседневной жизни), восьмеричная и шестнадцатеричная (в основном они применяются в инженерном деле).

Что представляет собой непозиционная система счисления?

Соответствующая система счисления характеризуется тем, что цифры в ней не всегда делятся по силе в зависимости от позиции относительно начала числа. Разность в их силе, в принципе, возможна, но не всегда является правилом.

чем различаются позиционные и непозиционные системы счисления. Смотреть фото чем различаются позиционные и непозиционные системы счисления. Смотреть картинку чем различаются позиционные и непозиционные системы счисления. Картинка про чем различаются позиционные и непозиционные системы счисления. Фото чем различаются позиционные и непозиционные системы счисления

Например, римское число XX (двадцать) состоит из двух одинаковых по силе цифр X, каждая из которых обозначает десять. В свою очередь, в числе XV (пятнадцать) первая цифра сильнее, поскольку соответствует десятичному основанию, а вторая — единичному числу пять.

Кроме того, в непозиционной системе счисления, в которой используются римские цифры, число, расположенное левее, может быть более слабым. Например, римская цифра IV, то есть 4, состоит из более слабой, расположенной левее I(единицы) и более сильной, расположенной правее V (пять). Цифра 4 образуется, таким образом, посредством вычитания более слабой цифры из более сильной.

Сравнение

Главное отличие позиционной системы счисления от непозиционной заключается в том, что в первой в структуре числа, состоящего более чем из одной цифры, все цифры отличаются по силе (в общем случае сильнее те, что расположены левее). Во второй системе счисления данная закономерность наблюдается только в некоторых случаях. Вполне возможно, что в структуре числа будут присутствовать цифры с одинаковой силой. При этом если сила цифр разная, необязательно, что более сильные будут располагаться левее, может наблюдаться и обратная ситуация.

Определив,в чем разница между позиционной и непозиционной системой счисления, зафиксируем выводы в таблице.

Источник

Основы систем счисления

Изучая кодировки, я понял, что недостаточно хорошо понимаю системы счислений. Тем не менее, часто использовал 2-, 8-, 10-, 16-ю системы, переводил одну в другую, но делалось все на “автомате”. Прочитав множество публикаций, я был удивлен отсутствием единой, написанной простым языком, статьи по столь базовому материалу. Именно поэтому решил написать свою, в которой постарался доступно и по порядку изложить основы систем счисления.

Введение

Система счисления — это способ записи (представления) чисел.

Что под этим подразумевается? Например, вы видите перед собой несколько деревьев. Ваша задача — их посчитать. Для этого можно — загибать пальцы, делать зарубки на камне (одно дерево — один палец\зарубка) или сопоставить 10 деревьям какой-нибудь предмет, например, камень, а единичному экземпляру — палочку и выкладывать их на землю по мере подсчета. В первом случае число представляется, как строка из загнутых пальцев или зарубок, во втором — композиция камней и палочек, где слева — камни, а справа — палочки

Системы счисления подразделяются на позиционные и непозиционные, а позиционные, в свою очередь, — на однородные и смешанные.

Непозиционная — самая древняя, в ней каждая цифра числа имеет величину, не зависящую от её позиции (разряда). То есть, если у вас 5 черточек — то число тоже равно 5, поскольку каждой черточке, независимо от её места в строке, соответствует всего 1 один предмет.

Позиционная система — значение каждой цифры зависит от её позиции (разряда) в числе. Например, привычная для нас 10-я система счисления — позиционная. Рассмотрим число 453. Цифра 4 обозначает количество сотен и соответствует числу 400, 5 — кол-во десяток и аналогично значению 50, а 3 — единиц и значению 3. Как видим — чем больше разряд — тем значение выше. Итоговое число можно представить, как сумму 400+50+3=453.

Однородная система — для всех разрядов (позиций) числа набор допустимых символов (цифр) одинаков. В качестве примера возьмем упоминавшуюся ранее 10-ю систему. При записи числа в однородной 10-й системе вы можете использовать в каждом разряде исключительно одну цифру от 0 до 9, таким образом, допускается число 450 (1-й разряд — 0, 2-й — 5, 3-й — 4), а 4F5 — нет, поскольку символ F не входит в набор цифр от 0 до 9.

Смешанная система — в каждом разряде (позиции) числа набор допустимых символов (цифр) может отличаться от наборов других разрядов. Яркий пример — система измерения времени. В разряде секунд и минут возможно 60 различных символов (от «00» до «59»), в разряде часов – 24 разных символа (от «00» до «23»), в разряде суток – 365 и т. д.

Непозиционные системы

Как только люди научились считать — возникла потребность записи чисел. В начале все было просто — зарубка или черточка на какой-нибудь поверхности соответствовала одному предмету, например, одному фрукту. Так появилась первая система счисления — единичная.

Единичная система счисления

Число в этой системе счисления представляет собой строку из черточек (палочек), количество которых равно значению данного числа. Таким образом, урожай из 100 фиников будет равен числу, состоящему из 100 черточек.
Но эта система обладает явными неудобствами — чем больше число — тем длиннее строка из палочек. Помимо этого, можно легко ошибиться при записи числа, добавив случайно лишнюю палочку или, наоборот, не дописав.

Для удобства, люди стали группировать палочки по 3, 5, 10 штук. При этом, каждой группе соответствовал определенный знак или предмет. Изначально для подсчета использовались пальцы рук, поэтому первые знаки появились для групп из 5 и 10 штук (единиц). Все это позволило создать более удобные системы записи чисел.

Древнеегипетская десятичная система

чем различаются позиционные и непозиционные системы счисления. Смотреть фото чем различаются позиционные и непозиционные системы счисления. Смотреть картинку чем различаются позиционные и непозиционные системы счисления. Картинка про чем различаются позиционные и непозиционные системы счисления. Фото чем различаются позиционные и непозиционные системы счисления

Почему она называется десятичной? Как писалось выше — люди стали группировать символы. В Египте — выбрали группировку по 10, оставив без изменений цифру “1”. В данном случае, число 10 называется основанием десятичной системы счисления, а каждый символ — представление числа 10 в какой-то степени.

Числа в древнеегипетской системе счисления записывались, как комбинация этих
символов, каждый из которых повторялся не более девяти раз. Итоговое значение равнялось сумме элементов числа. Стоит отметить, что такой способ получения значения свойственен каждой непозиционной системе счисления. Примером может служить число 345:

чем различаются позиционные и непозиционные системы счисления. Смотреть фото чем различаются позиционные и непозиционные системы счисления. Смотреть картинку чем различаются позиционные и непозиционные системы счисления. Картинка про чем различаются позиционные и непозиционные системы счисления. Фото чем различаются позиционные и непозиционные системы счисления

Вавилонская шестидесятеричная система

В отличии от египетской, в вавилонской системе использовалось всего 2 символа: “прямой” клин — для обозначения единиц и “лежачий” — для десятков. Чтобы определить значение числа необходимо изображение числа разбить на разряды справа налево. Новый разряд начинается с появления прямого клина после лежачего. В качестве примера возьмем число 32:
чем различаются позиционные и непозиционные системы счисления. Смотреть фото чем различаются позиционные и непозиционные системы счисления. Смотреть картинку чем различаются позиционные и непозиционные системы счисления. Картинка про чем различаются позиционные и непозиционные системы счисления. Фото чем различаются позиционные и непозиционные системы счисления
Число 60 и все его степени так же обозначаются прямым клином, что и “1”. Поэтому вавилонская система счисления получила название шестидесятеричной.
Все числа от 1 до 59 вавилоняне записывали в десятичной непозиционной системе, а большие значения — в позиционной с основанием 60. Число 92:
чем различаются позиционные и непозиционные системы счисления. Смотреть фото чем различаются позиционные и непозиционные системы счисления. Смотреть картинку чем различаются позиционные и непозиционные системы счисления. Картинка про чем различаются позиционные и непозиционные системы счисления. Фото чем различаются позиционные и непозиционные системы счисления
Запись числа была неоднозначной, поскольку не существовало цифры обозначающей ноль. Представление числа 92 могло обозначать не только 92=60+32, но и, например, 3632=3600+32. Для определения абсолютного значения числа был введен специальный символ для обозначения пропущенного шестидесятеричного разряда, что соответствует появлению цифры 0 в записи десятичного числа:
чем различаются позиционные и непозиционные системы счисления. Смотреть фото чем различаются позиционные и непозиционные системы счисления. Смотреть картинку чем различаются позиционные и непозиционные системы счисления. Картинка про чем различаются позиционные и непозиционные системы счисления. Фото чем различаются позиционные и непозиционные системы счисления
Теперь число 3632 следует записывать, как:

чем различаются позиционные и непозиционные системы счисления. Смотреть фото чем различаются позиционные и непозиционные системы счисления. Смотреть картинку чем различаются позиционные и непозиционные системы счисления. Картинка про чем различаются позиционные и непозиционные системы счисления. Фото чем различаются позиционные и непозиционные системы счисления

Шестидесятеричная вавилонская система — первая система счисления, частично основанная на позиционном принципе. Данная система счисления используется и сегодня, например, при определении времени — час состоит из 60 минут, а минута из 60 секунд.

Римская система

Римская система не сильно отличается от египетской. В ней для обозначения чисел 1, 5, 10, 50, 100, 500 и 1000 используются заглавные латинские буквы I, V, X, L, C, D и M соответственно. Число в римской системе счисления — это набор стоящих подряд цифр.

Позиционные системы счисления

Как упоминалось выше — первые предпосылки к появлению позиционной системы возникли в древнем Вавилоне. В Индии система приняла форму позиционной десятичной нумерации с применением нуля, а у индусов эту систему чисел заимствовали арабы, от которых её переняли европейцы. По каким-то причинам, в Европе за этой системой закрепилось название “арабская”.

Десятичная система счисления

Это одна из самых распространенных систем счисления. Именно её мы используем, когда называем цену товара и произносим номер автобуса. В каждом разряде (позиции) может использоваться только одна цифра из диапазона от 0 до 9. Основанием системы является число 10.

Для примера возьмем число 503. Если бы это число было записано в непозиционной системе, то его значение равнялось 5+0+3 = 8. Но у нас — позиционная система и значит каждую цифру числа необходимо умножить на основание системы, в данном случае число “10”, возведенное в степень, равную номеру разряда. Получается, значение равно 5*10 2 + 0*10 1 + 3*10 0 = 500+0+3 = 503. Чтобы избежать путаницы при одновременной работе с несколькими системами счисления основание указывается в качестве нижнего индекса. Таким образом, 503 = 50310.

Помимо десятичной системы, отдельного внимания заслуживают 2-, 8-, 16-ая системы.

Двоичная система счисления

Эта система, в основном, используется в вычислительной технике. Почему не стали использовать привычную нам 10-ю? Первую вычислительную машину создал Блез Паскаль, использовавший в ней десятичную систему, которая оказалась неудобной в современных электронных машинах, поскольку требовалось производство устройств, способных работать в 10 состояниях, что увеличивало их цену и итоговые размеры машины. Этих недостатков лишены элементы, работающие в 2-ой системе. Тем не менее, рассматриваемая система была создана за долго до изобретения вычислительных машин и уходит “корнями” в цивилизацию Инков, где использовались кипу — сложные верёвочные сплетения и узелки.

Двоичная позиционная система счисления имеет основание 2 и использует для записи числа 2 символа (цифры): 0 и 1. В каждом разряде допустима только одна цифра — либо 0, либо 1.

Примером может служить число 101. Оно аналогично числу 5 в десятичной системе счисления. Для того, чтобы перевести из 2-й в 10-ю необходимо умножить каждую цифру двоичного числа на основание “2”, возведенное в степень, равную разряду. Таким образом, число 1012 = 1*2 2 + 0*2 1 + 1*2 0 = 4+0+1 = 510.

Хорошо, для машин 2-я система счисления удобнее, но мы ведь часто видим, используем на компьютере числа в 10-й системе. Как же тогда машина определяет какую цифру вводит пользователь? Как переводит число из одной системы в другую, ведь в её распоряжении всего 2 символа — 0 и 1?

Чтобы компьютер мог работать с двоичными числами (кодами), необходимо чтобы они где-то хранились. Для хранения каждой отдельной цифры применяется триггер, представляющий собой электронную схему. Он может находится в 2-х состояниях, одно из которых соответствует нулю, другое — единице. Для запоминания отдельного числа используется регистр — группа триггеров, число которых соответствует количеству разрядов в двоичном числе. А совокупность регистров — это оперативная память. Число, содержащееся в регистре — машинное слово. Арифметические и логические операции со словами осуществляет арифметико-логическое устройство (АЛУ). Для упрощения доступа к регистрам их нумеруют. Номер называется адресом регистра. Например, если необходимо сложить 2 числа — достаточно указать номера ячеек (регистров), в которых они находятся, а не сами числа. Адреса записываются в 8- и 16-ричной системах (о них будет рассказано ниже), поскольку переход от них к двоичной системе и обратно осуществляется достаточно просто. Для перевода из 2-й в 8-ю число необходимо разбить на группы по 3 разряда справа налево, а для перехода к 16-ой — по 4. Если в крайней левой группе цифр не достает разрядов, то они заполняются слева нулями, которые называются ведущими. В качестве примера возьмем число 1011002. В восьмеричной — это 101 100 = 548, а в шестнадцатеричной — 0010 1100 = 2С16. Отлично, но почему на экране мы видим десятичные числа и буквы? При нажатии на клавишу в компьютер передаётся определённая последовательность электрических импульсов, причём каждому символу соответствует своя последовательность электрических импульсов (нулей и единиц). Программа драйвер клавиатуры и экрана обращается к кодовой таблице символов (например, Unicode, позволяющая закодировать 65536 символов), определяет какому символу соответствует полученный код и отображает его на экране. Таким образом, тексты и числа хранятся в памяти компьютера в двоичном коде, а программным способом преобразуются в изображения на экране.

Восьмеричная система счисления

8-я система счисления, как и двоичная, часто применяется в цифровой технике. Имеет основание 8 и использует для записи числа цифры от 0 до 7.

Шестнадцатеричная система счисления

Шестнадцатеричная система широко используется в современных компьютерах, например при помощи неё указывается цвет: #FFFFFF — белый цвет. Рассматриваемая система имеет основание 16 и использует для записи числа: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B. C, D, E, F, где буквы равны 10, 11, 12, 13, 14, 15 соответственно.

Помимо рассмотренных позиционных систем счисления, существуют и другие, например:
1) Троичная
2) Четверичная
3) Двенадцатеричная

Позиционные системы подразделяются на однородные и смешанные.

Однородные позиционные системы счисления

Определение, данное в начале статьи, достаточно полно описывает однородные системы, поэтому уточнение — излишне.

Смешанные системы счисления

К уже приведенному определению можно добавить теорему: “если P=Q n (P,Q,n – целые положительные числа, при этом P и Q — основания), то запись любого числа в смешанной (P-Q)-ой системе счисления тождественно совпадает с записью этого же числа в системе счисления с основанием Q.”

Смешанными системами счисления также являются, например:
1) Факториальная
2) Фибоначчиева

Перевод из одной системы счисления в другую

Иногда требуется преобразовать число из одной системы счисления в другую, поэтому рассмотрим способы перевода между различными системами.

Преобразование в десятичную систему счисления

Пример: 1012 = 1*2 2 + 0*2 1 + 1*2 0 = 4+0+1 = 510

Преобразование из десятичной системы счисления в другие

Записав все остатки снизу вверх, получаем итоговое число 17. Следовательно, 1510 = 178.

Преобразование из двоичной в восьмеричную и шестнадцатеричную системы

В качестве примера возьмем число 10012: 10012 = 001 001 = (0*2 2 + 0*2 1 + 1*2 0 ) (0*2 2 + 0*2 1 + 1*2 0 ) = (0+0+1) (0+0+1) = 118

Для перевода в шестнадцатеричную — разбиваем двоичное число на группы по 4 цифры справа налево, затем — аналогично преобразованию из 2-й в 8-ю.

Преобразование из восьмеричной и шестнадцатеричной систем в двоичную

Перевод из восьмеричной в двоичную — преобразуем каждый разряд восьмеричного числа в двоичное 3-х разрядное число делением на 2 (более подробно о делении см. выше пункт “Преобразование из десятичной системы счисления в другие”), недостающие крайние разряды заполним ведущими нулями.

Для примера рассмотрим число 458: 45 = (100) (101) = 1001012

Перевод из 16-ой в 2-ю — преобразуем каждый разряд шестнадцатеричного числа в двоичное 4-х разрядное число делением на 2, недостающие крайние разряды заполняем ведущими нулями.

Преобразование дробной части любой системы счисления в десятичную

Преобразование осуществляется также, как и для целых частей, за исключением того, что цифры числа умножаются на основание в степени “-n”, где n начинается от 1.

Преобразование дробной части двоичной системы в 8- и 16-ую

Перевод дробной части осуществляется также, как и для целых частей числа, за тем лишь исключением, что разбивка на группы по 3 и 4 цифры идёт вправо от десятичной запятой, недостающие разряды дополняются нулями справа.

Пример: 1001,012 = 001 001, 010 = (0*2 2 + 0*2 1 + 1*2 0 ) (0*2 2 + 0*2 1 + 1*2 0 ), (0*2 2 + 1*2 1 + 0*2 0 ) = (0+0+1) (0+0+1), (0+2+0) = 11,28

Преобразование дробной части десятичной системы в любую другую

Для перевода дробной части числа в другие системы счисления нужно обратить целую часть в ноль и начать умножение получившегося числа на основание системы, в которую нужно перевести. Если в результате умножения будут снова появляться целые части, их нужно повторно обращать в ноль, предварительно запомнив (записав) значение получившейся целой части. Операция заканчивается, когда дробная часть полностью обратится в нуль.

Для примера переведем 10,62510 в двоичную систему:
0,625*2 = 1,25
0,250*2 = 0,5
0,5*2 = 1,0
Записав все остатки сверху вниз, получаем 10,62510 = (1010), (101) = 1010,1012

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *